An overview of methods for network meta-analysis using individual participant data: when do benefits arise?

Thomas PA Debray^{1,2}, Ewoud Schuit ^{1,2,3}, Orestis Efthimiou^{4,5}, Johannes B Reitsma^{1,2}, John PA Ioannidis³, Georgia Salanti^{4,5,6}, Karel GM Moons^{1,2} on behalf of GetReal Workpackage 4

Real-Life Data in Drug Development

¹Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands, ²Cochrane Netherlands, University Medical Center Utrecht, The Netherlands, ³Meta-Research Innovation Center at Stanford, Stanford University, USA, ⁴Institute of Social and Preventive Medicine, University of Bern, Switzerland, ⁵Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Greece, Department Institute of Primary Health Care, University of Bern, Switzerland

Background

- * Network meta-analysis (NMA) is often based on aggregate data (AD)
- * About 1/8 of AD-NMA suffer from network inconsistency
- * In the presence of heterogeneity, the usefulness of NMA may be limited

Aim

To explore common challenges and potential advantages of NMA that are based in individual participant data (IPD) rather than AD.

Case study

- * 18 anti-depressant trials
- * Longitudinal measurements of Hamilton Depression (HAMD) score
- * Substantial drop-out of participants (up to 36%)
- * Estimation of relative change in HAMD score after 6 weeks

Three types of AD

- * Scenario 1: Complete case analysis ■
- * Scenario 2: Last observation carried forward
- * Scenario 3: Multivariate regression

Trial	Comparison	Scenario 1		Scenario 2		Scenario 3	
i	$t_i:b_i$	H_0	$d_{t_ib_i}$	H_0	$d_{t_ib_i}$	H_0	$d_{t_ib_i}$
1	TeCA:Plac	22.2	-3.54 (2.63)	22.1	-6.72 (1.80)	22.1	-6.07(2.35)
2	TeCA:Plac	23.7	-1.94(2.16)	23.6	-1.46(1.78)	23.6	-2.22(2.10)
3	TeCA:Plac	22.9	-0.77(1.81)	23.1	1.59(1.40)	23.1	1.11 (1.71)
4	TCA:Plac	24.7	-6.92(2.11)	24.8	-5.36(1.77)	24.8	-7.00(2.15)
5	TCA:Plac	21.5	1.80 (1.06)	21.6	-3.00(1.40)	21.6	-0.23(1.25)
6	TCA:Plac	27.6	-4.67 (1.60)	27.2	-3.77(1.57)	27.2	-4.49(1.72)
7	TCA:Plac	23.3	-3.33(1.79)	23.4	-5.34(1.49)	23.4	-5.56(1.90)
8	TeCA:Plac	21.9	-3.03(1.06)	22.2	-2.22(1.00)	22.2	-2.78(1.09)
9	TeCA:TCA	25.8	0.13(1.11)	25.9	0.02(1.23)	25.9	0.21(1.24)
10	TeCA:Plac	24.0	-3.46(2.02)	24.0	-1.83(1.73)	24.0	-3.46(2.09)
12	TCA:Plac	29.1	-0.95(2.44)	30.2	2.89 (4.08)	30.2	-0.50(3.37)
13	TeCA:TCA	26.0	2.00 (1.17)	25.7	0.99 (1.34)	25.7	1.81 (1.21)
14	TeCA:TCA	22.4	0.14(1.19)	22.3	-0.50(1.24)	22.3	0.42(1.16)
17	TeCA:TCA	27.2	0.82(1.23)	26.8	1.96 (1.36)	26.8	0.82(1.24)
18	TeCA:TCA	24.7	0.42 (0.91)	24.6	0.68 (0.96)	24.6	0.57 (0.90)

PMA = pairwise meta-analysis (using common heterogeneity term), NMA = network meta-analysis, NMR = network meta-regression, NMA-PF = network meta-analysis adjusting for prognostic factors, NMA-TX = network meta-analysis adjusting for treatment-covariate interaction, MNMA = multivariate network meta-analysis

Conclusions

- * IPD-NMA models achieved improved consistency and less heterogeneity by (1) modelling longitudinal outcomes with informative drop-out and (2) allowing for participant-level treatment-covariate interaction
- Obtaining IPD could be prioritized for those trials in an AD-NMA that compare the treatments of primary interest (1) and for which direct and indirect evidence are in disagreement or (2) when the NMA suffers from heterogeneity

More information

Please do not hesitate to get in touch!! (T.Debray@umcutrecht.nl)

Our work has recently been published in Statistical Methods in Medical Research

DOI: 10.1177/0962280216660741 - PMID: 27487843
The article can directly be accessed by scanning the QR code.

