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Prediction modeling and IPD meta-analysis

� Opportunities
I Increase effective sample size
I Improve generalizability

� Challenges
I Heterogeneity of IPD populations (e.g. baseline risk)
I Validation of aggregated model
I Implementation of aggregated model in new individuals

� Assumptions
I Logistic regression models
I Homogeneity of predictor-outcome associations

� Illustrative example
I Diagnosis of Deep Venous Thrombosis
I IPD from 12 studies (N = 153− 1768)



Step 1: Estimation of predictor-outcome associations

What β terms will be used in the final model?

� Stacking

yi ∼ Bernoulli (πi )

logit (πi ) = α + β′Xi

� Random effects modeling of the intercept

logit (πij) = αj + β′Xij with αj ∼ N
(
α, τ2

α

)
� Stratified estimation of the intercept

logit (πij) =
M∑

m=1

(αmIm=j) + β′Xij



Step 2: Choosing an appropriate model intercept

What α term will be used in the final model?

� Average intercept
I Stacking
I Random effects

� Intercept from an included study
I Random effects
I Stratified estimation
I Select intercept by similarity in outcome frequency

� New intercept
I Estimate from outcome prevalence

(requires mean-centering of predictor variables)
I Estimate from new IPD



Step 3: Model evaluation

Evaluate entire strategy of model development and intercept
choice

� Internal-external cross-validation (IECV, by Royston et al.)

� Iteratively use M-1 studies for derivation and the remaining
study for validation

� Distinguish between discrimination and calibration

� Interpret model performance across M validation rotations

� Develop final model



Illustrative example: DVT (stratified estimation)

� (Nearly) homogeneous predictor-outcome associations
I α̂ = −1.80 (τ̂ = 0.47)
I β̂sex = 0.47 (τ̂ = 0.03)
I β̂surg = 0.67 (τ̂ = 0.05)

� AUC between 0.55 and 0.65 in the IECV
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Results for stratified estimation of the intercept (mean-centering of predictor variables). The intercept is estimated
from the outcome frequency in the validation population.



Illustrative example: DVT (stratified estimation)

� Heterogeneous predictor-outcome associations
I α̂ = −3.98 (τ̂ = 0.31)
I β̂malign = 0.38 (τ̂ = 0.35)
I β̂calfdif3 = 1.05 (τ̂ = 0.16)
I β̂surg = 0.25 (τ̂ = 0.09)
I β̂ddimdich = 2.76 (τ̂ = 0.41)

� AUC between 0.73 and 0.92 in the IECV
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Illustrative example: DVT (stratified estimation)

� Weakly heterogeneous predictor-outcome associations
I α̂ = −2.25 (τ̂ = 0.47)
I β̂sex = 0.37 (τ̂ = 0.06)
I β̂surg = 0.56 (τ̂ = 0.15)
I β̂calfdif3 = 1.28 (τ̂ = 0.19)

� AUC between 0.64 and 0.76 in the IECV
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Discussion

� Stratified estimation helps to improve generalizability
I Final intercept estimated from outcome frequency
I Final intercept selected based on outcome frequency
I Average final intercept
I Requires reporting of estimated intercepts!

� Internal-external cross-validation
I Appraise model fit and its predictive ability
I Identify heterogeneous populations
I Ascertain the best strategy for choosing an intercept

� Avoid heterogeneity
I Focus on (nearly) homogeneous predictor-outcome associations
I Investigate non-linear or interaction terms
I Discard heterogeneous studies from the meta-analysis


